
QuixBugs: A Multi-Lingual Program Repair
Benchmark Set Based on the Quixey Challenge

Derrick Lin∗
Independent Researcher, USA

drrckln@gmail.com

James Koppel
MIT

Cambridge, Massachusetts, USA
jkoppel@mit.edu

Angela Chen
Google, Inc

Mountain View, California, USA
angchen@google.com

Armando Solar-Lezama
MIT

Cambridge, Massachusetts, USA
asolar@csail.mit.edu

Abstract
Recent years have seen an explosion of work in automated
program repair. While previous work has focused exclusively
on tools for single languages, recent work in multi-language
transformation has opened the door for multi-language pro-
gram repair tools. Evaluating the performance of such a tool
requires having a benchmark set of similar buggy programs
in different languages. We present QuixBugs, consisting of
40 programs translated to both Python and Java, each with a
bug on a single line. The QuixBugs benchmark suite is based
on problems from the Quixey Challenge, where program-
mers were given a short buggy program and 1 minute to fix
the bug.

CCS Concepts • Software and its engineering → Soft-
ware maintenance tools;

Keywords automated program repair; benchmark

ACM Reference Format:
Derrick Lin, James Koppel, Angela Chen, and Armando Solar-
Lezama. 2017. QuixBugs: A Multi-Lingual Program Repair Bench-
mark Set Based on the Quixey Challenge. In Proceedings of 2017
ACM SIGPLAN International Conference on Systems, Programming,
Languages, and Applications: Software for Humanity (SPLASH Com-
panion’17). ACM, New York, NY, USA, 2 pages. https://doi.org/10.
1145/3135932.3135941

∗This paper reflects work completed while Derrick was an intern at Tarski
Technologies, a startup founded by James Koppel which specialized in
automated program repair

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SPLASH Companion’17, October 22–27, 2017, Vancouver, Canada
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5514-8/17/10.
https://doi.org/10.1145/3135932.3135941

1 Introduction
This need to reimplement program repair tools for other
languages motivated the development of ASTOR [7], and
prompted the authors of GenProg, originally for C, to reim-
plement their tool from scratch for Java [4].

Recent work [2] has opened the doors for multi-language
transformation, where a single program transformation tool
can be specialized to work on many different languages,
requiring only slightly more work than building a trans-
formation for one language. As program repair is itself a
form of source-to-source transformation, and program re-
pair algorithms are often based on program-transformation
techniques [1, 5, 6], this opens the possibility for creating
multi-language program repair tools. Such a development
would be quite significant: a multi-language program repair
tool would have many more potential users than a single-
language one, and could thus command far more investment.
All existing program-repair benchmarks focus on a single
language, and the use of distinct benchmark sets for different
languages does not permit an apples-to-apples comparison
of the tool’s performance across languages.
Addressing this problem, we have created QuixBugs, the

first multi-lingual parallel corpus of program repair bench-
marks. TheQuixBugs benchmark contains 40 programs trans-
lated into both Java and Python, each with a bug on a single
line. Each buggy program is accompanied by passing and
failing test cases, and a uniform driver for running any of
the programs on their tests, in both Python and java.

2 Methodology
The programs in QuixBugs originated from the Quixey Chal-
lenge [3]. From 2011 to 2013, mobile app search startup
Quixey1 ran a challenge in which programmers were given
an implementation of a classic algorithm with a bug on a
single line, and had one minute to supply a fix, winning $100
upon successful completion. Their problems have proved

1Quixey announced its closure in February 2017, after raising over $150
million in funding.

55

https://doi.org/10.1145/3135932.3135941
https://doi.org/10.1145/3135932.3135941
https://doi.org/10.1145/3135932.3135941

SPLASH Companion’17, October 22–27, 2017, Vancouver, Canada D. Lin et al.

an excellent dataset for program repair. Because they were
developed as challenges for humans by people unaware of
program repair, each buggy program is interesting, and the
set as a whole has reduced potential for experimenter bias.

We manually translated all 40 buggy Python programs to
Java. Several points of care were needed. Several challenges
we faced arose from dealing with the differences between
Java and Python’s type systems. Python’s use of heteroge-
neous collections caused trouble, as these were unnatural
to translate into Java. Another point of care was required
because different Python programs may use the same base
data structure for different use cases (e.g.: a Python list may
represent a list or a stack).

We created a test driver to serve as an interface to create
the test input objects for Java. While standard JSON deseri-
alization was sufficient for creating test objects in the form
expected by most Python programs, the Java ones required
inputs be statically converted to the parameter type required
of the buggy Java method. The test driver uses Java’s re-
flection to obtain these types and perform the conversion.
Because the programs used inconsistent graph representa-
tions, we decided to hardcode the Python and Java testcases
for problems with these inputs. We hope to find better meth-
ods of implementing these special testcases in future work.
Some Python programs used fictitious libraries, particularly
data structures such as min-heaps and ordered sets, as pseu-
docode; we supplied implementations of these. Finally, de-
spite the relative verbosity of Java, we took care to maintain
the property that all bugs were only on one line. Ultimately,
we succeeded in translating all 40 buggy Python programs
to Java programs with similar bugs.

Table 1 classifies the 40 programs by defect type. We tried
to use the defect ontology of Tan et al [8]. However, we found
it a poor match for the distribution of defects in QuixBugs.
First, it does not have subcategories for especially common
instances of its patterns (e.g.: off-by-one errors). Second, its
ontology did not include nonlocal defect patterns such as
swapped variables. We hence used our own classification.
We did not make it a goal to provide correct versions of

each program. However, the original Quixey Challenge prob-
lems contained multiple corrected implementations of each
Python program, which we have also included in QuixBugs.

3 Conclusion
This paper presents the QuixBugs benchmark that aims to
facilitate future empirical study in automated program re-
pair, particularly program repair tools that target multiple
languages. Because this benchmark suite includes similar
programs with the same bug across multiple languages, it
allows for more objective measurement of how well a pro-
gram repair tool is able to generalize across languages, as
opposed to using distinct single-language benchmarks with
different sets of bugs.

Table 1. Defect classes in the QuixBugs benchmark

Defect class Count

Incorrect assignment operator 1
Incorrect variable 5

Incorect comparison operator 5
Missing condition 2
Missing/added +1 4

Variable swap 6
Incorrect array slice 2

Variable prepend 2
Incorrect data structure constant 2

Incorrect method called 1
Incorrect field dereference 1

Missing arithmetic expression 1
Missing function call 4

Missing line 4

The Java portion of QuixBugs was previously used by
the Quixey Challenger, a prototype repair tool based on
constraint-based search. We have begun developing a multi-
language program repair tool based on our Cubix [2] frame-
work for multi-language transformation. QuixBugs is avail-
able from https://github.com/jkoppel/QuixBugs.

Acknowledgments
The authors would like to thank Marshall Quander and Liron
Shapira of Quixey for providing access to their data. This
work is supported by NSF Grant No. 1122374.

References
[1] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013.

Automatic Patch Generation Learned from Human-Written Patches. In
Proceedings of the 2013 International Conference on Software Engineering.
IEEE Press, 802–811.

[2] James Koppel. 2017. "Incremental Parametric Syntax for Multi-Language
Transformation". Master’s thesis. MIT.

[3] Ryan Lawler. 2012. "How do you hire great engineers? Give them a
challenge". https://gigaom.com/2012/01/19/quixey-challenge/. (2012).
Accessed: 2017-07-16.

[4] Claire le Goues. 2014. https://bitbucket.org/clegoues/genprog4java.
(2014).

[5] Claire Le Goues, Thanh Vu Nguyen, Stephanie Forrest, and Westley
Weimer. 2012. Genprog: A Generic Method for Automatic Software
Repair. IEEE Transactions on Software Engineering 38, 1 (2012), 54–72.

[6] Fan Long and Martin Rinard. 2016. Automatic Patch Generation
by Learning Correct Code. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages.

[7] Matias Martinez and Martin Monperrus. 2016. ASTOR: A Program
Repair Library for Java. In Proceedings of the 25th International Sympo-
sium on Software Testing and Analysis. ACM, 441–444.

[8] Shin Hwei Tan, Jooyong Yi, Sergey Mechtaev, Abhik Roychoudhury,
et al. 2017. "Codeflaws: A Programming Competition Benchmark for
Evaluating Automated Program Repair Tools". In Proceedings of the
39th International Conference on Software Engineering Companion. IEEE
Press, 180–182.

56

https://github.com/jkoppel/QuixBugs
https://gigaom.com/2012/01/19/quixey-challenge/
https://bitbucket.org/clegoues/genprog4java

	Abstract
	1 Introduction
	2 Methodology
	3 Conclusion
	Acknowledgments
	References

